Imperial College
London

Lecture 9

Counters & Shift Registers

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

PYKC 11 Nov 2025 EE2 Circuits and Systems Lecture 9 Slide 1

Learning outcomes

*** How to specify a simple binary counter?
*** How to convert from binary to BCD format?

*** How the generate various clock signals with different
periods?

** How to specify shift registers?

** How to design a Linear Feedback Shift Register (LFSR)
that produces pseudo-random binary sequence (PRBS)?

*** How to specify ROM and RAM in SystemVerilog

PYKC 11 Nov 2025 EE2 Circuits and Systems Lecture 9 Slide 2

Example: Simple Counter

counter1
en
count[WIDTH-1:0]
rst
clk >
module counter #(

parameter WIDTH = 4
) (

input

input

input

output logic [WIDTH-1:0

iF
always_ff @ (posedge clk)
if (rst) count <= {WIDTH{1'b@}};
else count <= count + {{WIDTH-1{1'b@}}, en};
endmodu le

PYKC 11 Nov 2025 EE2 Circuits and Systems Lecture 9 Slide 3

Mapping from SV to hardware

if (rst) count <= {WIDTH{1'b0}}:
else count <= count + {{WIDTH-1{1'b0}}, en};

output reg WIDTH-1:8] count
always_ff @ (posed

{WIDTH-1{1'b0}, en} count[WIDTH-1:0]

PYKC 11 Nov 2025 EE2 Circuits and Systems Lecture 9 Slide 4

Displaying a binary number as decimal

0

out[6..0]| 5 / 6 /

[N

7seg

3.0] w—
=l decoder al |2

¢ InLab 4 Task 2, you are required to display the counter value as binary coded
decimal number instead of hexadecimal. A SystemVerilog component
bin2bcd_16.sv is provided.

¢ Hex numbers are difficult to interpret. Often we would like to see the binary value
displayed as decimal. For that we need to design a combinational circuit to
converter from binary to binary-coded decimal. For example, the value 8’hff or
8'b11111111 is converted to 8'd255 in decimal.

PYKC 11 Nov 2025 EE2 Circuits and Systems Lecture 9 Slide 5

Shift and Add 3 algorithm [1] — shifting operation

Shift the 8-bit binary number left by 1 bit = multiply number by 2
Shifting the number left 8 times = multiply number by 28

So far we have done nothing to the number — it has the same value

® & 6 o6 o o

Let us consider converting hexadecimal number 8’'h7C (which is decimal 8°'d124)

Now truncate the number by dropping the bottom 8 bits = divide number by 28

The idea is that, as we shift the number left into the BCD digit “bins”, we make the

necessary adjustment to the hex number so that it conforms to the BCD rule (i.e. falls

within 0 to 9, instead of 0 to 15)

8-bit binary

Original binary number 0111

1100

Shift left 8 times - 0111 1100 0000
(same as multiply by 28)

0000O

Truncate the lower 8 bits
(same as divide by 28) _ 0111 1100

PYKC 11 Nov 2025 EE2 Circuits and Systems

Lecture 9 Slide 6

Shift and Add 3 algorithm [2] — shift left with problem

+ If we take the original 8-bit binary number and shift this three times into the BCD

digit positions. After 3 shifts we are still OK, because the ones digit has a value of
3 (which is OK as a BCD digit).

+ If we shift again (4" time), the digit now has a value of 7. This is still OK. However,
no matter what the next bit it, another shift will make this digit illegal (either as

[Pt

hexadecimal

¢ In our case, this will be a “F”!

Original binary number

Shift left 1 bit
—no problem

Shift left 1 bit
- no problem

Shift left 1 bit
—no problem

Shift left 1 bit
- no problem

Shift left 1 bit
— problem, not BCD

Hundreth
BCD

e” or “f”, both not BCD).

Tens
BCD

Ones
BCD

011

1111

8-bit binary
0111 1100
1111 1000
1111 00O00O
1110 000O
1100 00O00O
1000 00O00O

PYKC 11 Nov 2025

EE2 Circuits and Systems

Lecture 9 Slide 7

Shift and Add 3 algorithm [3] — shift and adjust

¢ So on the fourth shift, we detect that the value is > or = 5, then we adjust this
number by adding 3 before the next shift.

+ In that way, after the shift, we move a 1 into the tens BCD digit as shown here.

Original binary number

Shift left 1 bit
—no problem

Shift left 1 bit
- no problem

Shift left 1 bit
—no problem

Shift left 1 bit
- no problem

Perform adjustment
Before shifting by adding 3

We perform adjustment (if
>=5, add 3) before shift

Hundreth
BCD

Tens
BCD

1

o
[y

(l);g)s 8-bit binary
0111 | 1100
1111|1000

1111|0000

1 1110|0000
1100|0000
1000 | 0000
1100| 0000

PYKC 11 Nov 2025

EE2 Circuits and Systems

Lecture 9 Slide 8

Shift and Add 3 algorithm [4] — full conversion

+ In summary, the basic idea is to shift the binary number left, one bit at a time, into
locations reserved for the BCD results.

+ Let us take the example of the binary number 8'h7C. This is being shifted into a
12-bit/3 digital BCD result of 12'd124 as shown below.

Hundreth Tens Ones e
BCD BCD BCD 8-bit binary
Shift left three times
no adjust 1110 0
Shift left
Ones=7, 25 1100
Add 3 1100
Shift left
Ones=5 100
Add 3 100
Shift left 2 times
Tens =6, >5 0
adds | J1o0o01]oo1o0 | o
Shift left
BCD value is correct 0010 0100

PYKC 11 Nov 2025 EE2 Circuits and Systems Lecture 9 Slide 9

SystemVerilog implementation - bin2bcd_8.sv

module bin2bcd_8 (
input logic [7:0 X,
output logic [11:@] BCD

);

ogic [19:0] result;
integer 1i;

always_comb
begin
result(19:0] = 0;
result(7:0] = x;
for (i=0; i<8; i=i+l
if (result[11:8] >= 5)
result[11:8] = result[11:8] + 4'd3;

if (result[15:12] >= 5)
result[15:12] = result[15:12] + 4'd3;

result = result << 1;

BCD = result(19:8];
end

endmodule

PYKC 11 Nov 2025 EE2 Circuits and Systems Lecture 9 Slide 10

A Flexible Timer — clktick.sv

+ Instead of having a counter that count

events, we often want a counter to provide N
a measure of time. We call this a timer. ?srt]
¢ Here is a useful timer component that clk

uses a clock reference, and produces a
pulse lasting for one cycle every N+1

clock cycles. clk
+ If“en” signal is low (not enabled), the clkin count
pulses are ignored. tick

module clktick #(
parameter WIDTH = 16
) (

WIDTH-1:0

[WIDTH-1:0] count;

18 clktick
] | tick
—

. |
N [N1]N2]----[1] o

PYKC 11 Nov 2025

EE2 Circuits and Systems

Lecture 9 Slide 11

clktick.sv explained

¢ “count’ is an internal counter with WIDTH bits "
¢ We use this as a down (instead of up) counter ¢ P T____T [
¢ The counter value goes from N to 0, hence count N [N1[N2]---c] 1] 0

tick B

there are N+1 clock cycles for each tick pulse

always_ff @ (posedge clk)

if (rst) begin
tick <= 1'b0;
count <= N;
end

else if (en) begin

1T (count ==

tick <= 1'bl;
count <= N;

else
tick <= 1'b0;
count <= count - 1'bl;

end
endmodule

Lecture 9 Slide 12

PYKC 11 Nov 2025 EE2 Circuits and Systems

Cascading counters

¢ By connecting clktick module in series with a counter module, we can produce a
counter that counts the number of millisecond elapsed as shown below.

16'd49999 ,12 clktick counter
16
1'b1 —{ 1EN tick 1EN cnt e Elapsed time (in ms)
50MHz C1/- C1/+
et >
1R

reset
50MHz 1t 1t ¢t vt ¢t r t 1t t 1t 111
tick |

) 1ms ”
CT cnt cnt + 1 cnt + 2

PYKC 11 Nov 2025 EE2 Circuits and Systems Lecture 9 Slide 13

Clock divider (clkdiv.sv)

+ Another useful module is a clock divider circuit. K 161 clkdiv
e
¢ This produces a symmetrical clock output,
dividing the input clock frequency by a factor of en 1EN clkout
27 (K+1). clkin > C1/-
ckin -t 1Tt t 1 1 1t 1
count N INA[N2]----[1 [0o [N
clkout _|

module clkdiv #(
parameter WIDTH = 16
) (

WIDTH-1:0

[WIDTH-1:08] count;

PYKC 11 Nov 2025 EE2 Circuits and Systems

Lecture 9 Slide 14

clkdiv.v explained

16 :
K — clkdiv ckin f 1 1 1 1 1 o1
en 1EN clkout count N [N1]N2]----[1 [o [N
clkin > Ci- clkout _ |

initial clkout = 1'b@;
initial count = {WIDTH{1'b0@}}

always_ff @ (posedge clkin)

if (en == 1'bl)
if (count == {WIDTH{1'b@}
clkout <= ~clkout;

count <= K;

else
count <= count - 1'b1;

endmodule
EE2 Circuits and Systems Lecture 9 Slide 15

PYKC 11 Nov 2025

Shift Register specification in SystemVerilog

SRG
clk >C1/>
,] [
data_in 1D
data_out

module sregd (

input
input
input

clk,
rst,
data_in,

data_out

[4:1] sreg;

always_ff @ (posedge clk)
if (rst)
sreg <= 4'b0;
begin
sreg 4]
sregl3
sregl2
sreg(1]

else
<= sregl3];
sregl(2];
sregl(l];

data_in;

<=
<=
<=

end

assign data_out = sregl4];
endmodule

Ik
¢ >C1/=> >C1/=> ‘—>C1/-) ‘—>C1/-)
data_in_| [] [1 [1 [data out
—1D 1D 1D f 1D \
sreg[4]
sreg[1] sreg[2] sreg[3]
DFF
clk =>C1/°>
,] [
data_in 1D
sreg[1]
sreg[2]
sreq[3] data_out

sreg <= {sreg[3:1], data_in};

PYKC 11 Nov 2025

EE2 Circuits and Systems

Lecture 9 Slide 16

clk

Linear Feedback Shift Register (LFSR) (1)

>C1/>

1D

>C1/>

Q1

1D

Q2

—>C1/>

1D

Q3

> C1/>

1D

Q4

XOR

R

@)
w

@)
N

@)
[

count

Assuming that the initial value is 4’b0001.

This shift register counts through the sequence as
shown in the table here.

This is now acting as a 4-bit counter, whose count
value appears somewhat random.

This type of shift register circuit is called “Linear
Feedback Shift Register” or LFSR.

Its value is sort of random, but repeat very 2N-1
cycles (where N = no of bits).

The “taps” from the shift register feeding the XOR
gate(s) is defined by a polynomial as shown
above.

D|WJO |~ IN

O|IRIFPIFP|IPI|IOIRP|IOIFRPIP|[O|OIRLr|O]10]0

ol el |l F ol Pl Dl (el El (R il ol (o) (ol o) (o) e

O|1010|IRP|FPIFPIP|IOIFRP|IO|FR|F,IO|I0]I+]O

Rlolo|lolr|r|r|r]|olr]|o|r]|r|olo]|r
=
o

PYKC 11 Nov 2025

EE2 Circuits and Systems

Lecture 9 Slide 17

Primitive Polynomial

K L
L s

—>C1/=>
= —Q1
—D 1D

L>C1/-)

— Q2 — Q3

—=>C1/>

1D

1D

XOR

Primitive polynomial:

1+ X3+ X*

¢ This circuit implements the LFSR based on this primitive polynomial:
¢ The polynomial is of order 4 (highest power of x)
¢ This produces a pseudo random binary sequence (PRBS) of length 24-1 =15
¢ Here is a table showing primitive polynomials at different sizes (or orders)

m

m

)] ON W b W

o

11
12

13

1+ X+Xx°
1+x+x*
1+X+X’

1= X+Xx°
1+X°+X’
1+xX+x+xt+x
1+x*+x°

1 ‘.Y! _XZS

1 ‘.Y: __Y:l

1+ X+ X4+ xt+ 0
1+ X+ +x*+x"

15 |1+X+x"
16 |[1+X+X"x2+x%
17 [1+X°+x"
18 [1+x"+x"
19 [1+X+X"x'+x"¥
20 [1+X°+x®
21 |1+X+x*®
2 [1+Xx+Xx*3
23 [1+X°+x®
24 [1+x+X*'x'+x¥

14 [1+X+x%=xP+x"

PYKC 11 Nov 2025

EE2 Circuits and Systems

Lecture 9 Slide 18

Ifsrd.sv

olk ‘ Primitive polynomial: 1 + X3 + X4
>C1/> >C1/> —>c1> —bBCc1/9
= Q1 T - Q2 T — Q3 T Q4
D D D 1D
XOR

module 1fsrd (
input logic clk,
input logi rst,
output logic [4:1] data_out
1A

always_ff @ (posedge clk, posedge
if (rst)
sreg <= 4'bl;
else
sreg <= {sreqg(3:1], sregld4] ~ sreg[3]};

assign data_out = sreg;
endmodule

PYKC 11 Nov 2025

EE2 Circuits and Systems Lecture 9 Slide 19

